线程池
python原创concurrent线程池大约 3 分钟约 1048 字
简介
线程(英语:thread)是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。在Unix System V及Sun中也被称为轻量进程(lightweight processes),但轻量进程更多指内核线程(kernel thread),而把用户线程(user thread)称为线程。 60年代,在OS中能拥有资源和独立运行的基本单位是进程,然而随着计算机技术的发展,进程出现了很多弊端,一是由于进程是资源拥有者,创建、撤消与切换存在较大的时空开销,因此需要引入轻型进程;二是由于对称多处理机(SMP)出现,可以满足多个运行单位,而多个进程并行开销过大。因此在80年代,出现了能独立运行的基本单位——线程(Threads)。
线程是独立调度和分派的基本单位。线程可以为操作系统内核调度的内核线程,如Win32线程;由用户进程自行调度的用户线程,如Linux平台的POSIX Thread;或者由内核与用户进程,如Windows 10的线程,进行混合调度。
同一进程中的多条线程将共享该进程中的全部系统资源,如虚拟地址空间,文件描述符和信号处理等等。但同一进程中的多个线程有各自的调用栈(call stack),自己的寄存器环境(register context),自己的线程本地存储(thread-local storage)。
一个进程可以有很多线程,每条线程并行执行不同的任务。
功能函数
- ThreadPoolExecutor
- submit
- result
- cancel
- cancelled
- running
- as_completed
- map
实例
# -*- coding: UTF-8 -*-
import concurrent.futures
from flask import Flask
from . import api
import time
from concurrent.futures import ThreadPoolExecutor
executor=ThreadPoolExecutor(2)
@api.route("/tasks")
def index():
threads=[]
# 同步调用
# threads.append(executor.submit(task1))
# threads.append(executor.submit(task2,'args1','args2'))
# 异步调用
concurrent.futures.as_completed(executor.submit(task1))
concurrent.futures.as_completed(executor.submit(task2,'ab1'))
return "ab";
def task1():
time.sleep(10)
print('ab')
def task2(args1):
print(args1)
return 'ab'
from concurrent.futures import ThreadPoolExecutor
import threading
import time
# 定义一个准备作为线程任务的函数
def action(max):
my_sum = 0
for i in range(max):
print(threading.current_thread().name + ' ' + str(i))
my_sum += i
return my_sum
# 创建一个包含2条线程的线程池
pool = ThreadPoolExecutor(max_workers=2)
# 向线程池提交一个task, 50会作为action()函数的参数
future1 = pool.submit(action, 50)
# 向线程池再提交一个task, 100会作为action()函数的参数
future2 = pool.submit(action, 100)
# 判断future1代表的任务是否结束
print(future1.done())
time.sleep(3)
# 判断future2代表的任务是否结束
print(future2.done())
# 查看future1代表的任务返回的结果
print(future1.result())
# 查看future2代表的任务返回的结果
print(future2.result())
# 关闭线程池
pool.shutdown()
获取执行结果
from concurrent.futures import ThreadPoolExecutor,wait
import threading
import time
# 定义一个准备作为线程任务的函数
def action(max):
my_sum = 0
for i in range(max):
print(threading.current_thread().name + ' ' + str(i))
my_sum += i
return my_sum
# 创建一个包含2条线程的线程池
with ThreadPoolExecutor(max_workers=2) as pool:
# 向线程池提交一个task, 50会作为action()函数的参数
future1 = pool.submit(action, 50)
# 向线程池再提交一个task, 100会作为action()函数的参数
future2 = pool.submit(action, 100)
def get_result(future):
print(future.result())
# 为future1添加线程完成的回调函数
future1.add_done_callback(get_result)
# 为future2添加线程完成的回调函数
future2.add_done_callback(get_result)
# 可批量新增,等待完成
list=[pool.submit(action,i) for i in range(10)]
for l in list:
l.add_done_callback(get_result)
wait(list)
print('--------------')
map获取返回结果
from concurrent.futures import ThreadPoolExecutor
import threading
import time
# 定义一个准备作为线程任务的函数
def action(max):
my_sum = 0
for i in range(max):
print(threading.current_thread().name + ' ' + str(i))
my_sum += i
return my_sum
# 创建一个包含4条线程的线程池
with ThreadPoolExecutor(max_workers=4) as pool:
# 使用线程执行map计算
# 后面元组有3个元素,因此程序启动3条线程来执行action函数
results = pool.map(action, (50, 100, 150))
print('--------------')
for r in results:
print(r)